We report in the Nanoscale the in vivo application of the technology of isotopically-barcoded ratiometric silver nanoparticles for quantitative biodistribution studies. In a proof of concept study we used peptides with previously described tissue tropism; one peptide that favors vascular beds of the normal lungs (RPARPAR; receptor neuropilin-1, or NRP-1) and another that is selective for central nervous system vessels (CAGALCY). Equimolar mixtures of the peptide-targeted Ag107-NPs and Ag109 control particles were mixed and injected intravenously. Distribution profiles of Ag107 and Ag109 in tissue extracts were determined simultaneously through inductively coupled plasma mass spectrometry (ICP-MS, both on tissue extracts and on cryosections to obtain spatial information). Internally controlled ratiometric AgNP system appears to be suitable for quantitative studies of the effect of targeting ligands on NP biodistribution, at average tissue concentration and distribution at the microscopic level. The platform might be particularly relevant for target sites with high local variability in uptake, such as tumors.

Schematic representation of the concept of isotopically-barcoded silver nanoparticles for in vivo biodistribution studies (Tambet Teesalu).

Ratiometric in vivo auditioning of targeted silver nanoparticles.Toome K, Willmore AA, Paiste P, Tobi A, Sugahara KN, Kirsimäe K, Ruoslahti E, Braun GB, Teesalu T.Nanoscale. 2017 Jul 20;9(28):10094-10100. doi: 10.1039/c7nr04056c. PMID: 28695222

 

This workshop provides an opportunity to get an overview of translational nanobiomedicine research from the leading European experts. The overarching themes are interactions of nanoparticles with biological systems, applications of precision-guided nanosystems for imaging and more efficient therapies, and the relationship of nanotechnology with personalized medicine.

 

 

Targeted nanosystems for imaging and therapy

Spring workshop, Tartu (Estonia)

May 10-12, 2017 

 

Venue: V-Spa Hotel and Conference Center, Riia 2, Tartu

 

Target audience : Graduate students , research staff

 

Organizers:   Lorena Simón Gracia  This email address is being protected from spambots. You need JavaScript enabled to view it.

                            Tambet Teesalu           This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

Free Registration at: http://registration.amarela.ee/spring-workshop/

 

 

Program and more information   Click Here

 

 

 

 

We report in Biomaterials development of a tumor-specific delivery system for the treatment of peritoneal carcinomatosis. We demonstrate that after intraperitoneal administration, pH-sensitive polymeric vesicles loaded with an anticancer drug paclitaxel and functionalized with the tumor penetrating peptide iRGD specifically accumulate in peritoneal tumors in mice and have higher antitumor activity than free paclitaxel or Abraxane (a nano-formulation currently used in the therapy of several types of carcinoma). Our findings suggest that iRGD polymersomes may potentially be translated to therapeutic interventions against peritoneal carcinomatosis.

This collaborative study was driven and coordinated by our senior researcher Lorena Simón-Gracia and carried out together with Prof. Giuseppe Battaglia’s lab in UC London (UK) and with Drs. Kazuki N Sugahara and Ramana Kotamraju and Prof. Erkki Ruoslahti at Sanford Burnham Prebys Medical Discovery Institute in La Jolla, Calif. (USA).

iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes Biomaterials. 2016 Jul 20;104:247-257.

Image: Homing of green fluorescent iRGD polymersomes in CT26 peritoneal tumor (Tu). Note that control organs (liver, Li; lung, Lu; spleen, Sp; kidney, Ki) and subcutaneous tumors (Tu s.c.) show minimal labeling.

This peptide can guide drugs and imaging agents to acute brain injuries and result in enhanced benefit. The peptide was identified by Aman Mann and Pablo Scodeller in the lab of Dr. Erkki Ruoslahti in collaboration with the cancer biology lab.

Link to the paper: Nature Communications

Links to news:Nature Reviews Chemical and Engineering News Novaator Science Daily The San Diego Union Tribute

Image: The tiny peptide CAQK improves the delivery of imaging agents to acute brain injuries.  (Luminiscence from porous silicon nanoparticles targeted with CAQK and control peptide CGGK in brain injuries)

Our article titled "Targeted Silver Nanoparticles for Ratiometric Cell Phenotyping" is well received.  It has been chosen to the cover of the May issue of Nanoscale and the Atlas of Science has published a layman's summary about the work. 

Artwork: Peter and Ryan Allen, UC Santa Barbara, USA.

Our work reaches Social Media. Few days ago Molecular Probes (Thermo Fisher Scientific) shared our image U87 cell line spheroids taking up RPARPAR-AgNPs (image of the month - April 2015 by Kadri Toome, MSc) in Facebook.

We are excited to announce that Olympus FV1200MPE-BX61WI multiphoton microscope of the Lab of Cancer Biology is installed and fully operational. The microscope is optimized for intravital imaging of small laboratory animals and live cell imaging, including 3D imaging of fixed tissue samples. The microscope has XLPLN25xW-MP large diameter objective (NA 1.05; WD 2.00mm; Olympus) designed for multiphoton excitation, Mai Tai DeepSee Ti:Sapphire infrared laser (Spectra-Physics, tuning range 690-1040nm; pulse width 70fs), and a dedicated image analysis computer equipped with Imaris and Adobe Photoshop software. The microscope is open to all qualified researchers interested in studying dynamics of physiological and pathological processes in live multicellular organisms. Contact: Maarja Haugas (This email address is being protected from spambots. You need JavaScript enabled to view it.). Reservation and terms of use: http://www.cancerbiology.ee/tecnologies/olympus-fv1200mpe

Kadri Toome and Tambet Teesalu of the laboratory of Cancer Biology participated in the joint symposium of the Finnish Synthetic Chemistry Society, the Medicinal Chemistry Committee of the Finnish Pharmaceutical Society and the Finnish Peptide Society “Emerging targets and molecules in middle space” (Helsinki, Finland, August 24-27, 2015). Kadri’s poster “Development and in vivo validation of blood-brain barrier targeting peptides” (authors: Toome K, Säälik P, Willmore AM, Tarmo Mölder T, Sudakov A, Kõiv K, Nikonov A, Teesalu T) was awarded the best poster prize. Tambet presented an invited talk entitled „Tumor homing peptides v2.0: streamlined discovery and applications for targeted payload delivery”.

At the beginning of March a new member Maarja Haugas joined with the Lab of Cancer Biology. After ten years in Finland at the University of Helsinki, where she defended a PhD degree in developmental biology and veterinary anatomy in 2011 and continued as a postdoctoral researcher in developmental neurobiology, she has returned to beloved University of Tartu. She has background in molecular and developmental biology and in neuroscience, as well as know-how in histology.

Starting from 1st of February a new lab​ ​member​ has​ joined us. Pablo David Scodeller is from Argentina and he concluded his PhD studies ​in the University of Buenos Aires under the supervision of​ ​D​r. Ernesto Calvo​​​. ​He then went on to work in the​ 'Chemistry of Nanomaterials' group led by Dr. Galo Soler Illia​ of Buenos Aires​,​ under CONICET fellowship​​. ​For the last two years he's been working in the 'Vascular Mapping Laboratory' of Dr. Erkki Ruoslahti at Sanford-Burnham Medical research Institute, in La Jolla, USA. His main research interests are: Nanomedicine, Tumor microenvironment, drug​ ​penetration, drug delivery, adjuvants of oncolytic drugs. Phage display in vivo and in vitro. Neurodegenerative diseases and brain injuries. His main hobbies include: cogitations over beer, tango music, attending milongas, and the study of the Buenos Aires jargon called Lunfardo .

Page 2 of 3